Brain structural changes as vulnerability factors and acquired signs of post-earthquake stress
Sekiguchi A, Sugiura M, Taki Y, Kotozaki Y, Nouchi R, Takeuchi H, Araki T, Hanawa S, Nakagawa S, Miyauchi CM, Sakuma A, Kawashima R.
Mol Psychiatry. 2012 May 22. doi: 10.1038/mp.2012.51. [Epub ahead of print]
Abstract
Many survivors of severe disasters, even those without posttraumatic stress disorder (PTSD), need psychological support. To understand the pathogenesis of PTSD symptoms and prevent the development of PTSD, the critical issue is to distinguish neurological abnormalities as vulnerability factors from acquired signs of PTSD symptoms in the early stage of adaptation to the trauma in the normal population. The neurological underpinnings of PTSD have been well characterized, but the causal relationships with the traumatic event are still unclear. We examined 42 non-PTSD subjects to find brain morphometric changes related to the severity of PTSD symptoms in a longitudinal magnetic resonance imaging study extending through the Great East Japan Earthquake. We found that regional grey matter volume (rGMV) in the right ventral anterior cingulate cortex (ACC) before the earthquake, and decreased rGMV in the left orbitofrontal cortex (OFC) through the earthquake were negatively associated with PTSD symptoms. Our results indicate that subjects with smaller GMV in the ACC before the earthquake, and subjects with decreased GMV in the OFC through the earthquake were likely to have PTSD symptoms. As the ACC is involved in processing of fear and anxiety, our results indicate that these processing are related to vulnerability for PTSD symptoms. In addition, decreased OFC volume was induced by failing to extinct conditioned fear soon after the traumatic event. These findings provide a better understanding of posttraumatic responses in early stage of adaptation to the trauma and may contribute to the development of effective methods to prevent PTSD.